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Abstract
By changing the chemical composition of foliage, the increase in atmospheric
CO2 is fundamentally altering insect herbivory. The responses of folivo-
rous insects to these changes is, however, highly variable. In this review we
highlight emerging mechanisms by which increasing CO2 alters the defense
chemistry and signaling of plants. The response of allelochemicals affecting
insect performance varies under elevated CO2, and results suggest this is
driven by changes in plant hormones. Increasing CO2 suppresses the pro-
duction of jasmonates and ethylene and increases the production of salicylic
acid, and these differential responses of plant hormones affect specific sec-
ondary chemical pathways. In addition to changes in secondary chemistry,
elevated CO2 decreases rates of water loss from leaves, increases tempera-
ture and feeding rates, and alters nutritional content. New insights into the
mechanistic responses of secondary chemistry to elevated CO2 increase our
ability to predict the ecological and evolutionary responses of plants attacked
by insects.

79

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
3.

58
:7

9-
97

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f I
lli

no
is 

- U
rb

an
a 

Ch
am

pa
ig

n 
on

 0
1/

28
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN58CH05-Zavala ARI 24 November 2012 18:22

Allelochemicals:
biochemical
substances produced
by plants, typically not
involved in primary
metabolism, that
negatively affect the
growth, survival, or
reproduction of other
organisms

INTRODUCTION
Insect herbivory affects native and agricultural ecosystems, reducing productivity and economic
yields and altering the biogeochemical cycling of nitrogen and other important elements (25,
122). The amount of plant material consumed by phytophagous insects is intimately associated
with its suitability and nutritional quality; in addition to increasing growth rates, elevated CO2

in the atmosphere dramatically alters these plant traits. Prior to the Industrial Revolution, the
concentration of atmospheric CO2 was stable for the previous 1,000 years at ∼270 µl liter−1 (64)
and well below 300 µl liter−1 for more than 20 Mya (103). The increase in anthropogenic emissions
caused primarily by combustion of fossil fuels is driving a dramatic increase in CO2. Today, the
atmosphere is ∼390 µl liter−1 and by end of the century it will be twice the pre-Industrial level
(64). The response of plants to this change in the atmosphere is fundamentally altering their
relationship with herbivorous insects.

Many insects, particularly hematophagous insects, respond directly to CO2 (50). However,
elevated CO2 affects folivorous arthropods indirectly by altering leaf chemistry (30, 85, 114).
Elevated CO2 typically causes carbohydrates to accumulate, increasing the carbon:nitrogen ratio
(C:N) (116). This change in the nutritional quality of foliage provided the foundation for the
compensatory feeding hypothesis, in which increased feeding compensates for poor nutritional
quality (84, 120). Its simplicity is attractive but also has limited the ability of the compensatory
feeding hypothesis to predict the diverse responses of insects to food sources developed under
elevated CO2. This hypothesis does not, for example, address the role of changes in plant secondary
metabolism and the different nutritional requirements affecting insect feeding. This review is,
in part, an attempt to move beyond the compensatory feeding hypothesis and to consider new
information about the molecular and biochemical mechanisms governing herbivory in a high CO2

world.
The effects of elevated CO2 on insect herbivory, operating through changes in leaf chemistry,

have been reviewed extensively (18, 30, 86, 116, 130). An emerging conclusion from these reviews
developed in this paper is that changes in primary metabolism affecting the suitability of plant
biomass to herbivores is relatively predictable, whereas changes in plant secondary metabolism
and its corresponding effects on insect feeding, survivorship, and reproduction are highly variable.
This variation poses a significant challenge to developing credible predictions about the responses
of herbivory to further increases in atmospheric CO2. In this review we highlight overlooked
processes and new discoveries that may reduce this uncertainty. We review a small but growing
literature demonstrating a direct effect of elevated CO2 on plant hormones, particularly jasmonates
and salicylic acid that modulate defense responses. Finally, recognizing the consistent responses of
plant primary metabolism to elevated CO2, we speculate how these changes may alter the ecology
of plant-insect interactions and further how they will shape the evolution of phytophagous insects.

ECOPHYSIOLOGICAL RESPONSES OF PLANTS TO ELEVATED CO2

Half of all insects, including the majority of the Orthoptera, Hemiptera, and Lepidoptera, often in
their larval forms, feed on plants and the amount of plant material consumed is largely dependent
on its nutritional quality. Although a multitude of factors determine the nutritional quality of
plants (124), nitrogen is of primary importance (94). The C:N of plant materials typically is many
times greater than that of insects, resulting in severe dietary limitations. As a result of the complex
coevolutionary relationships between herbivorous insects and plants, insects also must contend
with a diverse array of allelochemicals produced by plants. Up to atmospheric concentrations of
∼500 µl liter−1, the rate of photosynthesis in plants using the C3 photosynthetic pathway—the

80 Zavala · Nabity · DeLucia

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
3.

58
:7

9-
97

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f I
lli

no
is 

- U
rb

an
a 

Ch
am

pa
ig

n 
on

 0
1/

28
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN58CH05-Zavala ARI 24 November 2012 18:22

Stomatal
conductance:
the capacity of the
stomatal pores on
leaves to permit
diffusion of water
vapor, CO2, and other
gases between the leaf
interior and the
atmosphere

C3 plants: plants in
which the first step in
reducing CO2 during
photosynthesis
produces a
three-carbon acid

BVOC: biogenic
volatile organic
compound
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Figure 1
Exposure to elevated CO2 affects many facets of leaf chemistry and physiology with important implications
for herbivory. Whereas the stimulation of photosynthesis and accumulation of nonstructural carbohydrates,
and the decrease in leaf nitrogen, stomatal conductance, and specific leaf area, are relatively consistent
among plant species, changes in plant secondary chemistry are highly variable.

majority of plant species, including trees and many broadleaf crops—is highly responsive to
CO2 (88). This stimulation in the rate of photosynthesis caused by elevated CO2 propagates
through plant metabolism, affecting the nutritional quality and secondary metabolism of plants
and consequently the suitability of plant material to insect herbivores.

Increases in atmospheric CO2 associated with global change affect two aspects of plant physiol-
ogy with consequences for herbivory: photosynthesis and stomatal conductance. The mechanisms
by which elevated CO2 stimulates photosynthesis are well known. By stimulating the carboxylase
reaction and reducing the oxygenase reaction of the primary carboxylating enzyme responsible for
assimilating CO2 into carbohydrates in C3 plants (ribulose-1,5-bisphosphate carboxylase oxyge-
nase; RuBisCO), the increase in CO2 from ∼360 to 560 µl liter−1 stimulates net carbon uptake by
over 20% (2), driving an increase in biomass production (2, 32, 36, 88). How this stimulation in
photosynthesis affects the suitability of plant material to herbivorous insects has been extensively
reviewed (e.g., 77, 86, 116, 130, 158). Emerging from these reviews is the general conclusion that
whereas the response of plant primary metabolism to elevated CO2 affecting the nutritional qual-
ity of plants is relatively predictable, the response of allelochemicals and biogenic volatile organic
compounds (BVOCs) is highly variable (Figure 1).
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TNC: total
nonstructural
carbohydrates

SLA: specific leaf area

C4 plants: plants in
which the first step in
reducing CO2 during
photosynthesis
produces a
four-carbon acid

Chemical Properties of Leaves
The stimulation of photosynthesis under elevated CO2 almost invariably increases the concen-
tration of total nonstructural carbohydrates (TNC; starch and soluble sugars) (Figure 1). Starch
concentrations can increase by more than 40%, twice as high as pre-Industrial CO2 concentra-
tions; increases in sugars are somewhat less (130). As carbohydrates are increasingly invested in
plant cell walls, growth under increasing CO2 also causes a decline in specific leaf area—the ra-
tio of leaf area per unit leaf mass (SLA) (1, 31, 130). Both increasing TNC and decreasing SLA
effectively dilute leaf nitrogen concentration. The reduction in N concentration across a broad
range of species can exceed 14%, with C3 plants responding more than C4 plants, and little re-
sponse by nitrogen-fixing species (1, 116, 130). The reduction in N concentration is not simply
passive, however. A substantial proportion of leaf N is invested in RuBisCO (38), and because the
carboxylation reaction becomes increasingly stimulated by elevated CO2, there is evidence that
N invested in this enzyme is increasingly allocated elsewhere to rebalance resource acquisition by
plants (125, 135). The net effect of increasing TNC, decreasing SLA, and reallocation of leaf N
is to widen the difference between the C:N of plants and that of herbivorous insects, and in some
cases to reduce water content, further reducing the nutritional quality of plant material.

Changes in leaf properties stemming from the stimulation of photosynthesis vary by species
and environment, but there is general consistency in the direction of the responses (116). The
response of plant secondary metabolism, responsible for producing myriad defensive chemicals,
is, however, far from predictable (Figure 1).

While specialist herbivores should be highly responsive to changes in leaf carbohydrates and
N caused by elevated CO2, the feeding responses of generalists to variation in leaf quality will
be strongly modulated by defensive phytochemicals. There is, however, scant evidence for a gen-
eralized response of phytochemistry to elevated CO2 (Figure 1). One class of allelochemicals
that tends to respond predictably is phenolics. These compounds as well as terpenoids are impor-
tant defenses against herbivory, particularly in woody plants (39, 115), and the concentration of
phenolics tends to increase under elevated CO2 (77, 104).

Phenolic compounds are formed from phenylalanine via the shikimic acid pathway and are reg-
ulated by phenylalanine ammonia-lyase activity (142). Although phenolics are ubiquitous in plants
and this group is composed of a large variety of compounds with different biological functions,
in general only a few studies of the impact of elevated CO2 on plant chemistry report changes in
compounds other than tannins, some flavonoids (simple phenolics), or total phenolics. Recent re-
views have reported that plants grown under elevated CO2 environments increased total phenolics
by 19%, condensed tannins by 22%, and flavonoids by 27% (116).

Tannins often are present in high concentrations in vascular plants and bind with their phenolic
hydroxyl groups to soluble proteins in the insect gut, inhibiting protein hydrolysis and decreasing
the nutritional value of plant tissues. Whereas hydrolyzable tannins are limited to angiosperms,
nonhydrolyzable (condensed) tannins are widespread throughout the plant kingdom. Some phe-
nolics function as defense against herbivory, reducing consumption of plant tissue (53) as well
as growth and survivorship of insect herbivores (54, 69); other phenolics, such as antioxidant
flavonoids, can have positive effects on insect performance, i.e., stimulate feeding and promote
herbivore growth (102, 118).

Elevated CO2 increased the concentration of flavonoids with antioxidant properties, such as
quercetin, kaempferol, and fisetin in leaves and rhizomes of two ginger varieties, and exhibited
more enhanced free radical scavenging power (45). In soybean (Glycine max), elevated CO2

increased quercetin-to-kaempferol ratios but decreased concentration levels of the isoflavonoid
genistein (101). Whereas genistein is an important defense compound against herbivores in
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Concentration of
CO2: the volumetric
mixing ratio CO2 in
the atmosphere,
currently 392 ppm

soybeans (109), quercetin may be acting as an antioxidant for these plants, quenching reactive
oxygen species (ROS) (11, 112).

In contrast to phenolics, data for terpenoids are more variable. A review of 17 plant species (104)
reported a trend of increasing terpenoid concentration with elevated CO2. A recent meta-analysis,
however, indicates a small (−13%) but statistically significant decrease (116). The triterpenoid car-
denolides are important steroidal toxins against herbivores because they inhibit Na+/K+-ATPases,
which are important for maintenance of membrane potential in most animal cells. Elevated CO2

decreased cardenolide levels in plant tissue of four different genotypes of milkweed (Asclepias
syriaca) (140). Terpenoids are built from isoprene units (C5H8) through either the mevalonate
pathway in the cytosol or the methylerythritol phosphate pathway in plastids (147).

There is some indication that the mevalonic acid and methylerythritol phosphate pathways
leading to the production of terpenoids tend to be less stimulated by elevated CO2 than the
shikimic acid pathway producing phenolics (86). The responses of other classes of phytochemicals
to elevated CO2 defy generalization. The nitrogen-based glucosinolates produced by brassicoids,
for example, can increase or decrease in response to elevated CO2 (18, 70). Total glucosinolate
content increased in broccoli (Brassica oleracea) and Arabidopsis thaliana grown at elevated CO2 as
a result of a strong increase in aliphatic glucosinolates and the methylsulfinylalkyl glucosinolates
glucoraphanin and glucoiberin (19, 123). In contrast, indole glucosinolates decreased simultane-
ously in plants grown under elevated CO2 environments, predominantly because of a reduction
of glucobrassicin and 4-methoxy-glucobrassicin contents (123).

Plants emit BVOCs, including isoprene, terpenoids, green leaf volatiles, phenylpropanoids,
benzenoids, and methyl-esters of plant hormones, many of which act as indirect defenses by
summoning parasites or predators to the site of herbivore damage, in addition to playing important
roles in pollinator attraction, plant-plant communication, and plant-pathogen interactions (71,
79). The emission of BVOCs is sensitive to increasing temperature, but relatively little is known
about the response to elevated CO2 (105, 153). Elevated CO2 may increase the production of
BVOCs by increasing plant biomass. It is, however, unclear how elevated CO2 directly affects
the synthesis of BVOCs and models suggest that the effect of temperature will dominate (56,
153). There is some indication that the production of isoprene is decreased (110, 117) but other
BVOCs are increased under elevated CO2 (90). Elevated CO2 typically induces a decrease in
stomatal conductance; insofar as the emission of BVOCs from foliage is regulated by diffusion,
this reduction in conductance may contribute to a lower flux. As with allelochemicals, the response
of BVOC emission to elevated CO2 is highly idiosyncratic, varying with individual species.

Leaf Energy Balance and Herbivory
A less appreciated consequence of elevated CO2 for herbivory is through its effect on plant stom-
ata, the small pores on leaves that regulate the diffusion of CO2 and water vapor. Stomata are
dynamic, opening and closing in response to environmental and endogenous cues. Stomatal con-
ductance is determined by the pore size of individual stomata together with their number per
unit leaf area. As evaporation of water inside the leaf and subsequent diffusion to the atmosphere
(transpiration) increase, latent heat flux causes the leaf to cool. Folivorous insects, particularly leaf
miners, including larvae of moths (Lepidoptera), beetles (Coleoptera), sawflies (Hymenoptera),
flies (Diptera), aphids (Hemiptera), and mites (Arachnida), that are in intimate contact with leaves
are closely coupled to leaf temperature (108), thereby establishing a link between the functional
properties of leaf stomata and insect metabolism.

The concentration of CO2 in the atmosphere during leaf development as well as variation
on shorter timescales often reduces stomatal conductance, either by decreasing the number of
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stomata in developing leaves (16, 43, 150) or by decreasing their pore size (3, 58). Reductions
of up to 35% have been reported as CO2 is doubled from pre-Industrial levels, with an average
decrease of 21–22% (3, 96).

The reduction in stomatal conductance and increase in leaf temperature are not always propor-
tional because of feedbacks in the soil-plant-atmosphere system (14), but they can be substantial.
In maize grown at 750 µl liter−1 CO2, canopy evapotranspiration was reduced by 22% and leaf
temperature increased by an average of 1◦C compared with plants grown at 370 µl liter−1 (73).
Although increases in leaf temperature with a doubling of pre-Industrial CO2 concentrations
typically range from 0.2◦C to 2.0◦C (15, 34, 136), values as high as 3◦C have been reported (91).

The feeding rates of ectotherms are intimately dependent on temperature; generally, insect
feeding rate (74), foraging (129), and metabolism (62) increase with increasing temperature up to
a thermal maximum. Even relatively small increases in leaf temperature caused by elevated CO2

can strongly affect consumption rates. As temperature increased by 3◦C, the consumption rate of
Manduca sexta L. (75) and Popillia japonica Newman (98) increased by ∼50%.

Plants growing under elevated CO2 vary in their susceptibility to folivorous insects, and some
of this variation may be an indirect response to increasing temperature. A number of reports have
demonstrated increased feeding or population growth rates for aphids on plants grown under
elevated CO2 (e.g., 6, 55, 83), but as with chewing insects this response is variable (17, 59, 97).
Aphids are particularly sensitive to temperature (63), and the indirect effect of elevated CO2 on
leaf temperature may explain some of this variation.

For example, increasing concentration of the phenolic aldehyde, gossypol, has a demonstrable
negative effect on chewing insects and aphids on cotton, and the concentration of this compound
increases when cotton is grown under elevated CO2 (44). But, contrary to expectation, the sur-
vivorship of Aphis gossypii increased on plants grown under elevated CO2 (44). When the effect
of elevated CO2 on leaf temperature was removed by offering bird cherry oat aphids (Rhopalosi-
phum padi ) leaf disks of wheat grown under elevated and ambient CO2 in a laboratory setting,
elevated CO2 had little effect (131). Furthermore, no effect of elevated CO2 was resolved on aphids
(Cepegillettea betulaefoliae) feeding on paper birch under otherwise natural field conditions (7), and
it may not be coincidental that these trees were in the minority of studies showing an increase
rather than a decrease in leaf conductance under elevated CO2 (138). Reduction in stomatal con-
ductance and increase in leaf temperature were not examined in these studies and in each case may
explain the anomalous results on aphid performance.

In the only direct test published to date, O’Neill et al. (100) demonstrated the indirect effect
of CO2 operating through increased leaf temperature. Under field conditions, aphid infestation
in an outbreak year was twice as high on soybean grown under elevated CO2 (34), and soybean
leaves are on average 0.2◦C, but as great as 3◦C, higher under elevated CO2 (14, 34). By growing
soybean under controlled environmental conditions, O’Neill et al. (100) demonstrated that in-
creased population growth of alate soybean aphids (Aphis glycines Matsumura) on soybean grown
under elevated CO2 could be completely removed by eliminating differences in leaf temperature
between ambient and elevated CO2. Although elevated CO2 changes myriad leaf chemical and
structural characteristics affecting herbivory, this indirect effect on leaf temperature is not well
appreciated and may explain some of the diverse responses reported in the literature.

EMERGING MOLECULAR AND BIOCHEMICAL MECHANISMS
OF PLANT RESPONSES TO INSECT ATTACK
The lack of a widely supported conceptual model that embraces the complexities of plant
metabolism and relates the production of phytochemicals to variation in resource availability
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JA: jasmonic acid

LOX: lipoxygenase

poses a significant challenge to a deeper understanding of how elevated CO2 will affect plant-
insect interactions. Prominent hypotheses that purport to explain how variation in resources
affects secondary metabolism include the carbon-nutrient balance hypothesis and the growth dif-
ferentiation hypothesis (24, 29, 57). Although both hypotheses are conceptually attractive and
in some cases consistent with observed changes in defensive chemistry associated with elevated
CO2 (77), they do not consider genetically based plant allocation strategies and the intricacies of
metabolic regulation (13, 52). Understanding how the production of allelochemicals is altered by
elevated CO2 requires in-depth knowledge of how primary and secondary metabolism are coor-
dinated. New information about the response of plant hormones may unravel the complex and
variable responses of allelochemicals and herbivory to elevated CO2.

Plants attacked by herbivores generate specific hormonal signals through intricate networks
that elicit downstream changes in biochemistry and physiology (8, 61, 151). Emerging data suggest
that exposure to elevated CO2 modulates these hormonal signals and, further, that differential
responses of plant hormones may explain some of the variation in the observed responses of
allelochemicals.

Early Responses and Regulation of Jasmonates
The synthesis and signaling of jasmonic acid ( JA) compose a complex network that is regulated
in part by CO2 (Figure 2). Leaf damage increases (<30 min) accumulation of JA at the site of
wounding (95). Herbivore attack is associated with direct contact of insect oral secretions with
putative cell receptors, which transduce the alarm signal and induce the accumulation of defen-
sive metabolites (Figure 2). Fatty acid–amino acid conjugate obtained from Spodoptera exigua
oral secretions contributes to the Ca2+ influxes by forming ion channels in planar lipid bilayer
membranes (4, 92). The intracellular Ca2+ binds to different proteins, including calmodulins
and calcium-dependent protein kinases (80) (Figure 2). Herbivory and application of Mand-
uca sexta oral secretions to wounded leaves of Nicotiana attenuata (coyote tobacco) and Solanum
lycopersicum (tomato) elicit both salicylic acid–induced protein kinase and wound-induced pro-
tein kinase, which induce transcriptional regulation of many defense-related genes (67, 152).
Elevated CO2 may inhibit protein kinase activation, decreasing plant response to herbivore
attack.

JA is synthesized via the octadecanoid pathway, from which nearly all biosynthetic enzymes
have been identified in Arabidopsis and characterized in several other species (51, 121, 137). SIPK
regulates the activity of chloroplastic GLA1 phospholipase and releases linolenic acid from lipids
of chloroplast membranes (66), which is transformed through a series of reactions to 12-oxo-
phytodienoic acid (OPDA) by the enzymes, lipoxygenase (LOX), allene oxide synthase (AOS),
and allene oxide cyclase (AOC). Then in the peroxisomes, after three steps of β-oxidation, OPDA
is converted to JA (149) (Figure 2). Elevated CO2 downregulates constitutive and herbivory-
induced levels of key transcripts in soybean (Glycine max) associated with the JA pathway, LOX7,
LOX8, AOS, AOC (27, 155), and this downregulation corresponds with lower JA levels in soybean
foliage (26). Similar results have been observed in tomato (132).

Although mechanistic understanding of how elevated CO2 alters JA is lacking, carbon has a
direct role in modulating JA. JA patterns are circadian regulated, reaching peaks during the day
(49) at a time when photosynthesis is at its highest and intercellular CO2 (Ci) is at its lowest.
Conversely, JA titers decrease as Ci rises at night. Insofar as Ci tracks JA concentrations in plants,
circadian regulation of other variables such as assimilated carbon and light may also influence JA;
however, the cumulative suppression in JA under increasing CO2 increases herbivory in field and
chamber conditions (27, 132, 155).
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Figure 2
A model summarizing the effects of elevated CO2 on early signaling events in a cell as a response of herbivore attack. Herbivore oral
secretions are perceived by unidentified receptors and trigger the activation of Ca2+ channels, resulting in Ca2+ influxes. Ca2+ binds to
calmodulins and CDPKs. MAPKs, such as SIPK and WIPK, are also rapidly activated and trigger the biosynthesis of JA and thus
JA-Ile. JA-Ile binds to the COI1 receptor that leads to the degradation of JAZ proteins, resulting in the release of their inhibitory effect
on MYC2, which induces defense genes in the nucleus. MAPK and CDPK phosphorylate ACS proteins and increase ethylene
production, which leads to the increased activity of ethylene-responsive transcription factors, inducing defense genes. Elevated CO2
induces SA accumulation and NPR1 activation by changing redox status in the cytosol by inducing thioredoxins and glutathione
S-transferase (black arrow). The activated NPR1 functions as a TF in the nucleus and inhibits JA-induced defense gene expression. In
addition, we hypothesize that elevated CO2 may decrease MPK4 activity and activate downstream genes of SA signaling (black arrow).
The inhibition of early signaling events by elevated CO2 decreases the accumulation of metabolites that function as a defense against
herbivores. Abbreviations: ACC, 1-aminocyclopropane-1-carboxylic acid; ACS, 1-aminocyclopropane-1-carboxylic acid synthase;
OPDA, 12-oxo-phytodienoic acid; OPR, OPDA reductase; LOX, lipoxygenase; AOS, allene oxide synthase; AOC, allene oxide cyclase;
TF, transcription factor; SA, salicylic acid; JA, jasmonic acid; MAPK, mitogen-activated protein kinase; CDPK, calcium-dependent
protein kinase; SIPK, salicylic acid–induced protein kinase; WIPK, wound-induced protein kinase; NPR1, NONEXPRESSOR OF
PATHOGENESIS-RELATED GENES1.

ET: ethylene

CystPI: cysteine
protease inhibitor

TF: transcription
factor

Cross Talk Among Defense Pathways
Elevated CO2 increased the susceptibility of soybean to Japanese beetle (Popillia japonica) and
western corn rootworm (Diabrotica virgifera virgifera) by downregulating JA and ET (ethylene),
which in turn reduced the production of cysteine proteinase inhibitors (CystPIs) (27, 155, 156).
ET is an important modulator of JA-induced defense (143), affecting the induction of certain
antiherbivore defenses, such as protease inhibitors (PIs) in tomato (99). ET and JA are synergistic
in that they activate a common transcription factor (TF) (89, 93, 111). The ET pathway is initi-
ated by the synthesis of S-adenosylmethionine from methionine, which, after being oxidized by
1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, is converted to the ET precursor ACC
by ACC synthase (Figure 2). ACC synthesis is considered to be rate limiting for ET biosynthesis,

86 Zavala · Nabity · DeLucia

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
3.

58
:7

9-
97

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f I
lli

no
is 

- U
rb

an
a 

Ch
am

pa
ig

n 
on

 0
1/

28
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN58CH05-Zavala ARI 24 November 2012 18:22

SA: salicylic acid

NPR1:
NONEXPRESSOR
OF
PATHOGENESIS-
RELATED
GENES1

which can be inhibited in plants grown under elevated CO2 (27, 155). JA and ET are important
modulators for chewing insects, and the salicylic acid (SA) pathway is activated by plants in re-
sponse to attack by phloem-feeding insects, such as aphids and silverleaf whiteflies, and biotrophic
pathogens (146).

The JA and SA pathways often are antagonistic (76, 78, 141). While the elicitation of the JA
pathway may repress SA defense responses (22, 139), SA pathway-inducing insects and biotrophic
pathogens inhibit JA-dependent defenses (40, 128, 154) (Figure 2). This antagonism appears to
be expressed under elevated CO2. In tomato, elevated CO2 enhances induced defenses derived
from the SA-signaling pathway, such as the pathogenesis-related (PR) protein, and reduces JA
signaling and defenses (132). Moreover, elevated CO2 increases SA levels in field-grown soybeans
(26) and in leaves and rhizomes in two varieties of ginger (Zingiber officinale) (45).

The SA-signaling pathway initiates the synthesis of defense compounds against plant pathogens
(47), and elevated CO2 attenuates this pathogenicity (37). The mechanism by which elevated CO2

alters the hormonal response to herbivory is not known. Although SA is suggested to decrease
JA biosynthesis and sensitivity (126), priming plants with JA diminishes the capacity of SA to
reciprocally downregulate JA (82). The protein component of the SA-signaling pathway NPR1
(NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1) is required for the suppres-
sive effects of SA on pathogen-induced JA accumulation and JA-induced defense gene expression
(48, 126) (Figure 2), and increased production of NPR1 may be responsible for downregulat-
ing JA-related defenses and increasing susceptibility to herbivory in plants grown under CO2

enrichment (Figure 2). Experiments on Arabidopsis demonstrated that NPR1 is required for the
suppressive effects of SA on pathogen-induced JA accumulation and JA-induced defense gene
expression. In addition, these experiments indicated that the effects of SA on JA signaling are
mediated through the activity of NPR1 in the cytosol to function as TF in the nucleus (48, 126).
NPR1 is activated by redox changes that lead to reduction of the oxidized disulfide bonds in NPR1,
a reaction catalyzed by thioredoxins (133).

Elevated CO2 alters the transcripts regulating the redox status of soybeans by inducing thiore-
doxins and glutathione S-transferase (27). Moreover, elevated CO2 alters ascorbate or glutathione,
albeit with some degree of plant specificity (46, 106), and may allow TFs to interact with reduced
NPR1 and facilitate efficient DNA binding for induction of immune signaling (127). In addition,
alterations in these redox control hubs may interfere with sugar signaling (42).

NPR1 may be responsible for downregulating JA-related defenses and increasing susceptibility
to herbivory in plants grown in enriched CO2 (Figure 2). However, the early signal perceived by
plants that is responsible for upregulating the SA pathway still is not known. Recent experiments
demonstrated that SA and ROS accumulation and PR expression were increased in mitogen
protein kinase 4 (MPK4)-silenced soybeans and Arabidopsis (87, 107) (Figure 2). Expression of
WRKY33 increased 16-fold in MPK4-silenced soybeans, suggesting that MPK4 negatively con-
trols WRKY33 at both the posttranslational and transcriptional levels (87). MPK4 functions to
sequester WRKY33 in the nucleus and prevent it from activating downstream genes of SA sig-
naling (112). The mechanism of the interference of CO2 on the early signaling steps involved
in the perception of the attack by herbivores and the activation of JA biosynthesis remains to be
elucidated.

Hormonal Regulation of Chemical Defenses
Studies have started to address the effects of elevated CO2 on chemical defenses and the rela-
tionships between elevated CO2 and hormonal regulation. Elevated CO2 downregulates JA and
ET pathways and increases susceptibility to herbivore attack by disrupting both constitutive and
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Enriched CO2
atmosphere: the
increase above the
pre-Industrial CO2
concentration of
∼290 ppm caused
largely by the
combustion of fossil
fuels

Phytohormones:
chemicals, typically
active at very low
concentrations, that
regulate plant growth
and metabolism

inducible chemical defenses against certain insects; however, enriched atmospheric CO2 increases
SA, which increases other chemical defense pathways not regulated by JA (e.g., 45, 132). The
chemical response of damaged plants is integral to understanding adaptive antiherbivore defenses
(68) disrupted by elevated CO2 and should be investigated in concert with predictable changes in
CO2-driven plant traits.

Hormones affected by elevated CO2 regulate carbon-based defenses. Enriched CO2 atmo-
sphere increased the concentration of SA-regulated phenolics, such as flavonoids with antioxi-
dant properties (quercetin, kaempferol, and fisetin) (45), but decreased the concentration of JA-
regulated isoflavonoids such as genistein (101), an important defense against herbivores (109).
Although both isoflavonoids and flavonols are produced through the phenylpropanoid pathway
(41), phytohormonal regulation discriminates among different phenolic compounds. Nicotiana at-
tenuata impaired in JA biosynthesis was unable to accumulate phenolic conjugates after herbivory;
however, these plants produced rutin (a flavonoid) and chlorogenic acid (33, 60). In addition,
elevated CO2 decreased the JA-regulated triterpenoid cardenolides in four different genotypes of
milkweed (113, 140).

Nitrogen-based defenses also are regulated by phytohormones (61). One of the first defenses
against herbivores studied and regulated by JA are PIs in tomato (119). PIs impair the ability
of insects to digest proteins and assimilate amino acids (20, 157). Elevated CO2 increases the
susceptibility of soybean foliage to herbivores by downregulating the constitutive and inducible
expression of genes related to JA and ET; these in turn decrease the constitutive and induced
expression and activity levels of CystPIs, the principal defense against coleopteran herbivores
(132, 155, 156).

Differential responses in the levels of glucosinolates may also be explained by differential
responses of the JA- and SA-signaling pathways to elevated CO2. Elevated atmospheric CO2

increases constitutive glucosinolates regulated by SA, such as aliphatic glucosinolates, and the
methylsulfinylalkyl glucosinolates glucoraphanin and glucoiberin in broccoli, and these com-
pounds were induced in Arabidopsis after herbivory by diamondback moths (Plutella xylostella) (19,
35, 123). In contrast, indole glucosinolates regulated by JA decreased in plants grown under ele-
vated CO2, predominantly because of a reduction of glucobrassicin and 4-methoxy-glucobrassicin
contents, which are regulated by JA (21, 123).

Similarly, differential responses of plant BVOCs may depend on whether JA or SA regulates
them. For example, elevated CO2 decreased the emission of JA-regulated terpene volatile com-
pounds in cabbage (Brassica oleracea) (144, 145). In contrast, the upregulation of green leaf volatiles
(GLVs) following herbivory was enhanced by elevated CO2 (144, 145), and it appears that the
regulation of these compounds does not rely on JA signaling (5, 51). The differential responses
among pathways producing allelochemicals to JA/ET and SA might provide new insights into
how elevated CO2 modulates plant defenses against herbivory.

AGRICULTURAL AND ECOLOGICAL PERSPECTIVES
The accumulation of starch and sugars in plants grown under elevated CO2 is reproducible
(Figure 1), and this increase in plant C content directly alters patterns of herbivory relative to
how insects optimize target nutrient uptake. When faced with nutrient imbalances, insects alter
their feeding behavior to avoid the deleterious effects of excess. Too much protein can reduce
life span (e.g., 81); too much carbohydrate can increase lipid stores that reduce fitness (e.g., 148).
Excess C relative to protein in food results in compensatory feeding for some chewing insects
(e.g., 65) and increases aphid populations by supplying their bacterial endosymbionts with greater
availability of resources under elevated CO2 (12). Conversely, dilution of protein increases
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grasshopper assimilation efficiency of protein from C3 grasses (10). To this end, grasshoppers can
experience extreme population growth, achieving outbreak status and influencing community-
or ecosystem-level productivity (28).

Among insects, caterpillars preferentially consume more protein relative to C in ratios greater
than 2:1, whereas grasshoppers and aphids favor equal or less protein than C (12). Although it is
tempting to hypothesize that increasing C levels in C3 relative to C4 plants, for example, will favor
host switching among herbivores, it is more plausible that herbivores will acclimate and adapt to
their current hosts over generations. Compensatory feeding by the leaf beetle Gastrophysa viridula
on Rumex obtusifolius grown under elevated CO2 reduces survival and fecundity in subsequent
generations reared on the same plants (23). Similarly, caterpillars reduce assimilation efficiency of
C when consuming C-enriched plants grown under elevated CO2 (9). When plant defenses are
removed from this test by supplying caterpillars with artificial diets, exposure over generations
reduces lipid storage without changes in consumption (148). That the opposite occurs (i.e., lipid
storage increases under diets low in C) illustrates a strong selective environment for insect opti-
mization of nutrition. For adaptation to leaves with higher C:N, it is possible that insect excretion,
respiration, or increases in thermogenesis may reduce lipid storage; however, these mechanisms
have not been verified. Nonetheless, insects readily adapt to diets high in C over generations, but
the degree to which secondary chemistry modulates this selective environment may be equally
important.

The known shifts in primary metabolism under elevated CO2 appear to modulate downstream
defense production, but the mechanisms regulating these processes are less well understood. Our
current understanding is that elevated CO2 interacts with hormone signaling and suppresses LOX-
dependent defenses. Field studies of N. attenuata with suppressed LOX defenses linked defense
status to insect herbivore host switching and verified that new herbivores will feed on defense-
suppressed plants (72). Moreover, starch-modified mutants of Arabidopsis maintain different glu-
cosinolate profiles (134). These patterns stress the intimate association between C metabolism and
defense signaling and production. As a result, continual effort to elucidate the regulatory mech-
anisms linking the dynamics of C metabolism to defense signaling will provide greater insights
into plant-insect adaptation to changing climate.

CONCLUSIONS
We provide evidence indicating that changes in allelochemical production induced by increased
atmospheric CO2 concentration are regulated by hormones not by changes in the C:N, and
thereby suggest a testable hypothesis that future plant-herbivore relations will be mediated by
hormones as a consequence of transcriptional regulators. These predictions can be tested by mod-
ern molecular biology and biochemistry methods and will help elucidate the mechanisms involved
in allelochemical production under an elevated CO2 environment. We also suggest that the effects
of elevated CO2 on insect behavior will be regulated not only by changes in chemical properties
of leaves but also by changes in leaf temperature, a subject in need of further investigation.

SUMMARY POINTS

1. The increase in atmospheric CO2 is altering insect herbivory by changing the chemical
composition and energy balance of foliage.

2. The reduction of water loss under elevated CO2 increases leaf temperature, stimulating
the metabolism and feeding rate of insects in close association with leaf surfaces.
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3. Whereas the increase in carbohydrates and the reduction in C:N of leaves grown under
elevated CO2 are fairly reproducible, changes in the content of allelochemicals affecting
the suitability of foliage for insects are highly idiosyncratic.

4. JA synthesis and signaling compose a complex network that is regulated in part by CO2.
Elevated CO2 downregulates constitutive and herbivory-induced levels of key transcripts
associated with the JA pathway.

5. Elevated CO2 enhances induced defenses derived from the SA-signaling pathway, such
as the PR protein, and reduces signaling and defenses based on JA. NPR1 may be respon-
sible for downregulating JA-related defenses and increasing susceptibility to herbivory
in plants grown in enriched CO2.

6. The differential responses among pathways producing allelochemicals to JA/ET and SA
might provide new insights into how elevated CO2 modulates plant defenses against
herbivory.

7. Insects will likely acclimate and adapt over generations to changes in C:N in foliage, but
the influence of secondary chemistry will modulate this selection.

8. Carbon supply remains inexplicably linked to defense-hormone signaling and, under
increasing atmospheric CO2, will differentially alter the synthesis of allelochemicals.
Elucidating this link will enhance our understanding of plant-insect adaptation amid a
changing climate.
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8. Ballaré CL. 2011. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends
Plant Sci. 16:249–57

9. Barbehenn RV, Karowe DN, Chen Z. 2004. Effects of elevated atmospheric CO2 on the nutritional
ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140:86–95

10. Barbehenn RV, Karowe DN, Chen Z. 2004. Performance of a generalist grasshopper on a C3 and a C4
grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140:96–103

11. Bednarek P, Kerhoas L, Einhorn J, Franski R, Wojtaszek P, et al. 2003. Profiling of flavonoid conjugates
in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. J. Chem. Ecol. 29:1127–
42

12. Behmer ST. 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54:165–87
13. Berenbaum MR. 1995. The chemistry of defense: theory and practice. Proc. Natl. Acad. Sci. USA 92:2–8
14. Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR. 2007. Decreases in stomatal conductance of

soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotran-
spiration. Plant Physiol. 143:134–44

15. Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, et al. 2006. Hourly and seasonal
variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone con-
centrations for 3 years under fully open-air field conditions. Plant Cell Environ. 29:2077–90

16. Bettarini I, Vaccari F, Miglietta F. 1998. Elevated CO2 concentrations and stomatal density: observations
from 17 plant species growing in a CO2 spring in central Italy. Glob. Change Biol. 4:17–22

17. Bezemer T, Knight K, Newington J, Jones T. 1999. How general are aphid responses to elevated
atmospheric CO2? Ann. Entomol. Soc. Am. 92:724–30

18. Bidart-Bouzat M, Imeh-Nathaniel A. 2008. Global change effects on plant chemical defenses against
insect herbivores. J. Integr. Plant Biol. 50:1339–54

19. Bidart-Bouzat MG, Mithen R, Berenbaum MR. 2005. Elevated CO2 influences herbivory-induced de-
fense responses of Arabidopsis thaliana. Oecologia 145:415–24

20. Birk Y. 2003. Plant Protease Inhibitors: Significance in Nutrition, Plant Protection, Cancer Prevention and
Genetic Engineering. Berlin: Springer. 181 pp.

21. Brader G, Tas E, Palva ET. 2001. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis
by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol. 126:849–60

22. Brooks DM, Bender C, Kunkel BN. 2005. The Pseudomonas syringae phytotoxin coronatine promotes
virulence by overcoming salicylic acid dependent defenses in Arabidopsis thaliana. Mol. Plant Pathol.
6:629–39

23. Brooks GL, Whittaker JB. 1995. Responses of multiple generations of Gastrophysa viridula, feeding on
Rumex obtusifolius, to elevated CO2. Glob. Change Biol. 4:63–75

24. Bryant JP, Chapin FS, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate
herbivory. Oikos 40:357–68

25. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, et al. 2011. The functional role of producer
diversity in ecosystems. Am. J. Bot. 98:572–92

26. Casteel CL. 2010. Impacts of climate change on herbivore induced plant signaling and defenses. PhD thesis.
Univ. Ill. Urbana-Champaign. 155 pp.

27. Casteel CL, O’Neill BF, Zavala JA, Bilgin DD, Berenbaum MR, DeLucia EH. 2008. Transcriptional
profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese
beetles (Popillia japonica). Plant Cell Environ. 31:419–34

28. Indicates that lower
nitrogen content in
leaves enriched in
carbon by growing
under increasing CO2

concentrations
enhances the
development and
outbreak capacity of
some insects.

28. Cease AJ, Elser JJ, Ford CF, Hao S, Harrison JF. 2012. Heavy livestock grazing promotes locust
outbreaks by lowering plant nitrogen content. Science 335:467–69

29. Coley PD, Bryant JP, Chapin FS III. 1985. Resource availability and plant antiherbivore defense. Science
230:895–99

www.annualreviews.org • Elevated CO2 and Insect Herbivory 91

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

01
3.

58
:7

9-
97

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 U
ni

ve
rs

ity
 o

f I
lli

no
is 

- U
rb

an
a 

Ch
am

pa
ig

n 
on

 0
1/

28
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



EN58CH05-Zavala ARI 24 November 2012 18:22

30. Cornelissen T. 2011. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop.
Entomol. 40:155–63

31. Curtis P. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon
dioxide. Plant Cell Environ. 19:127–37

32. Curtis PS, Wang XZ. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and
physiology. Oecologia 113:299–313
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120. Schädler M, Roeder M, Brandl R, Matthies D. 2007. Interacting effects of elevated CO2, nutrient
availability and plant species on a generalist invertebrate herbivore. Glob. Change Biol. 13:1005–15

121. Schaller F, Schaller A, Stintzi A. 2005. Biosynthesis and metabolism of jasmonates. J. Plant Growth Regul.
23:179–99

122. Schmitz OJ. 2008. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39:133–52
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